712 research outputs found

    Natural history of Arabidopsis thaliana and oomycete symbioses

    Get PDF
    Molecular ecology of plant–microbe interactions has immediate significance for filling a gap in knowledge between the laboratory discipline of molecular biology and the largely theoretical discipline of evolutionary ecology. Somewhere in between lies conservation biology, aimed at protection of habitats and the diversity of species housed within them. A seemingly insignificant wildflower called Arabidopsis thaliana has an important contribution to make in this endeavour. It has already transformed botanical research with deepening understanding of molecular processes within the species and across the Plant Kingdom; and has begun to revolutionize plant breeding by providing an invaluable catalogue of gene sequences that can be used to design the most precise molecular markers attainable for marker-assisted selection of valued traits. This review describes how A. thaliana and two of its natural biotrophic parasites could be seminal as a model for exploring the biogeography and molecular ecology of plant–microbe interactions, and specifically, for testing hypotheses proposed from the geographic mosaic theory of co-evolution

    GaAs:Mn nanowires grown by molecular beam epitaxy of (Ga,Mn)As at MnAs segregation conditions

    Full text link
    GaAs:Mn nanowires were obtained on GaAs(001) and GaAs(111)B substrates by molecular beam epitaxial growth of (Ga,Mn)As at conditions leading to MnAs phase separation. Their density is proportional to the density of catalyzing MnAs nanoislands, which can be controlled by the Mn flux and/or the substrate temperature. Being rooted in the ferromagnetic semiconductor (Ga,Mn)As, the nanowires combine one-dimensional properties with the magnetic properties of (Ga,Mn)As and provide natural, self assembled structures for nanospintronics.Comment: 13 pages, 6 figure

    Optical orientation in bipolar spintronic devices

    Full text link
    Optical orientation is a highly efficient tool for the generation of nonequilibrium spin polarization in semiconductors. Combined with spin-polarized transport it offers new functionalities for conventional electronic devices, such as pn junction bipolar diodes or transistors. In nominally nonmagnetic junctions optical orientation can provide a source for spin capacitance--the bias-dependent nonequilibrium spin accumulation--or for spin-polarized current in bipolar spin-polarized solar cells. In magnetic junctions, the nonequilibrium spin polarization generated by spin orientation in a proximity of an equilibrium magnetization gives rise to the spin-voltaic effect (a realization of the Silsbee-Johnson coupling), enabling efficient control of electrical properties such as the I-V characteristics of the junctions by magnetic and optical fields. This article reviews the main results of investigations of spin-polarized and magnetic pn junctions, from spin capacitance to the spin-voltaic effect.Comment: 9 pages, 10 figures; appeared in the special issue of Semicond. Sci. Technol. on Optical Orientation, in honor of B. P. Zakharcheny

    Pathotypic diversity of Hyaloperonospora brassicae collected from Brassica oleracea

    Get PDF
    Downy mildew caused by Hyaloperonospora brassicae is an economically destructive disease of brassica crops in many growing regions throughout the world. Specialised pathogenicity of downy mildews from different Brassica species and closely related ornamental or wild relatives has been described from host range studies. Pathotypic variation amongst Hyaloperonospora brassicae isolates from Brassica oleracea has also been described; however, a standard set of B. oleracea lines that could enable reproducible classification of H. brassicae pathotypes was poorly developed. For this purpose, we examined the use of eight genetically refined host lines derived from our previous collaborative work on downy mildew resistance as a differential set to characterise pathotypes in the European population of H. brassicae. Interaction phenotypes for each combination of isolate and host line were assessed following drop inoculation of cotyledons and a spectrum of seven phenotypes was observed based on the level of sporulation on cotyledons and visible host responses. Two host lines were resistant or moderately resistant to the entire collection of isolates, and another was universally susceptible. Five lines showed differential responses to the H. brassicae isolates. A minimum of six pathotypes and five major effect resistance genes are proposed to explain all of the observed interaction phenotypes. The B. oleracea lines from this study can be useful for monitoring pathotype frequencies in H. brassicae populations in the same or other vegetable growing regions, and to assess the potential durability of disease control from different combinations of the predicted downy mildew resistance genes

    On Feeding Business Systems with Linked Resources from the Web of Data

    Get PDF
    Business systems that are fed with data from the Web of Data require transparent interoperability. The Linked Data principles establish that different resources that represent the same real-world entities must be linked for such purpose. Link rules are paramount to transparent interoperability since they produce the links between resources. State-of-the-art link rules are learnt by genetic programming and build on comparing the values of the attributes of the resources. Unfortunately, this approach falls short in cases in which resources have similar values for their attributes, but represent different real-world entities. In this paper, we present a proposal that leverages a genetic programming that learns link rules and an ad-hoc filtering technique that boosts them to decide whether the links that they produce must be selected or not. Our analysis of the literature reveals that our approach is novel and our experimental analysis confirms that it helps improve the F1 score by increasing precision without a significant penalty on recall.Ministerio de Economía y Competitividad TIN2013-40848-RMinisterio de Economía y Competitividad TIN2016- 75394-

    Modeling Supply Networks and Business Cycles as Unstable Transport Phenomena

    Full text link
    Physical concepts developed to describe instabilities in traffic flows can be generalized in a way that allows one to understand the well-known instability of supply chains (the so-called ``bullwhip effect''). That is, small variations in the consumption rate can cause large variations in the production rate of companies generating the requested product. Interestingly, the resulting oscillations have characteristic frequencies which are considerably lower than the variations in the consumption rate. This suggests that instabilities of supply chains may be the reason for the existence of business cycles. At the same time, we establish some link to queuing theory and between micro- and macroeconomics.Comment: For related work see http://www.helbing.or

    A systematic review of tests for lymph node status in primary endometrial cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The lymph node status of a patient is a key determinate in staging, prognosis and adjuvant treatment of endometrial cancer. Despite this, the potential additional morbidity associated with lymphadenectomy makes its role controversial. This study systematically reviews the accuracy literature on sentinel node biopsy; ultra sound scanning, magnetic resonance imaging (MRI) and computer tomography (CT) for determining lymph node status in endometrial cancer.</p> <p>Methods</p> <p>Relevant articles were identified form MEDLINE (1966–2006), EMBASE (1980–2006), MEDION, the Cochrane library, hand searching of reference lists from primary articles and reviews, conference abstracts and contact with experts in the field. The review included 18 relevant primary studies (693 women). Data was extracted for study characteristics and quality. Bivariate random-effect model meta-analysis was used to estimate diagnostic accuracy of the various index tests.</p> <p>Results</p> <p>MRI (pooled positive LR 26.7, 95% CI 10.6 – 67.6 and negative LR 0.29 95% CI 0.17 – 0.49) and successful sentinel node biopsy (pooled positive LR 18.9 95% CI 6.7 – 53.2 and negative LR 0.22, 95% CI 0.1 – 0.48) were the most accurate tests. CT was not as accurate a test (pooled positive LR 3.8, 95% CI 2.0 – 7.3 and negative LR of 0.62, 95% CI 0.45 – 0.86. There was only one study that reported the use of ultrasound scanning.</p> <p>Conclusion</p> <p>MRI and sentinel node biopsy have shown similar diagnostic accuracy in confirming lymph node status among women with primary endometrial cancer than CT scanning, although the comparisons made are indirect and hence subject to bias. MRI should be used in preference, in light of the ASTEC trial, because of its non invasive nature.</p
    • …
    corecore